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Abstract

In this work, response regimes are investigated in a system comprising of a linear oscillator (subject to harmonic

excitation) and a nonlinear energy sink (NES) with nonlinear damping characteristics. An analytical technique for the

treatment of certain class of nonlinear damping functions is developed. Special attention is paid to the case of piecewise-

quadratic damping, motivated by possible applications. It is demonstrated that the NES with a properly tuned piecewise-

quadratic damping element allows complete elimination of undesirable periodic regimes. In this way, an efficient system of

vibration absorption is obtained, and its performance can overcome that of a tuned mass damper (TMD). Numerical

results agree satisfactorily with the analytical predictions.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Nonlinear strategies in vibration suppression have been extensively studied over the last three decades. One
popular solution in vibration mitigation is the introduction of a weakly nonlinear vibration absorber. This
solution is based on the addition of a weakly nonlinear dof to a main system given to various types of external
excitation [1–11]. The effective bandwidth is governed by the damping in the absorber and a tradeoff exists
between attenuation efficiency and bandwidth.

Systems comprised of linear substructures and essentially nonlinear attachments are also intensively studied
from the viewpoint of vibration mitigation. Irreversible transient transfer (pumping) of energy from the
substructure to the essentially nonlinear attachment (nonlinear energy sink (NES)) was demonstrated and studied
in Refs. [12–15]. In the same papers, it has been shown that, when properly designed, essentially nonlinear local
attachments may passively absorb energy from transiently loaded linear subsystems, acting as NESs.

Addition of a relatively small and spatially localized nonlinear attachment (NES) leads to essential changes
in the properties of the entire system. Unlike common linear and weakly nonlinear systems, systems with
strongly nonlinear elements are able to react efficiently to the amplitude characteristics of external forcing over
a rather wide range of frequencies [15–18]. The spectacular abilities of the NES to suppress limit cycle
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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oscillations in the van der Pol oscillator has been demonstrated in Ref. [19]. Other experimental and analytical
studies [20,21] have shown that the NES may be of use in suppression of aero-elastic instabilities.

Recent studies concerned with application of NES to linear/weakly nonlinear systems subject to harmonic
excitations [22–25] have revealed an unusual response regime referred to as a strongly modulated regime
(SMR). As was demonstrated in Refs. [22,25], the SMR is rather effective for vibration suppression.
Numerical, experimental, and analytical studies related to this type of response are reported in Refs. [22–28].

Despite the obvious advantages of NES applications over their linear and weakly nonlinear counterparts, some
drawbacks also exist. The main drawback common to systems containing nonlinearities is the existence of
additional branches of periodic regimes that may be disastrous for vibration absorption. These regimes may lead
to vibrations with amplitudes much higher than those of the linear subsystems without the attachment are.

In this paper, we develop the strategy of elimination of the undesired periodic regimes in a system comprised of
a linear oscillator subject to harmonic excitation and the NES. This strategy is based on application of nonlinear
damping with piecewise-quadratic characteristics instead of the commonly used linear (viscous) element. General
analytical treatment of the system with a generic nonlinear damping function is presented in the second section.
NES with piecewise-quadratic damping characteristics is considered in Section 3, together with a detailed
analytical study of response regimes in the system. The tuning procedure of damping parameters for elimination
of the unwanted periodic regimes is discussed in Section 4. Numeric verification of the developed methodology is
performed in Section 5. Section 6 is devoted to concluding remarks and discussion.

2. Description of the model and analytic treatment

Following previous studies [22–28], we consider the linear oscillator subject to harmonic excitation and
attached to a NES comprised of an essentially nonlinear (pure cubic) spring and symmetric nonlinear damping
elements. The system is described by the following equations:

€y1 þ �f ðy1 � y2; _y1 � _y2Þ þ y1 þ
4
3
�ðy1 � y2Þ

3
¼ �A cosðð1þ �sÞtÞ

� €y2 � �f ðy1 � y2; _y1 � _y2Þ �
4
3
�ðy1 � y2Þ

3
¼ 0 (1)

By replacement of variables:

y1 þ �y2 ¼ u

y1 � y2 ¼ w (2)

the system described by Eq. (1) is transformed to the following form:

€uþ
uþ �w

1þ �
¼ �A cosðð1þ �sÞtÞ

€wþ ð1þ �Þf ðw; _wÞ þ
uþ �w

1þ �
þ

4

3
ð1þ �Þw3 ¼ �A cosðð1þ �sÞtÞ (3)

Complex variables are introduced as

_uþ iu ¼ j1e
it

_wþ iw ¼ j2e
it (4)

The system under investigation is considered in the vicinity of 1:1 resonance, and it is therefore reasonable
to assume that both j1 and j2 vary slowly with respect to unit frequency. It means that they describe slow
modulation of functions u and w, respectively. Thus, substituting Eq. (4) into Eq. (1), and performing
averaging over one forcing period, one obtains

_j1 þ
i�

2ð1þ �Þ
ðj1 � j2Þ ¼

�A

2
expði�stÞ
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_j2 þ
i�

2ð1þ �Þ
ðj2 � j1Þ þ ð1þ �Þa1ðj2;j

�
2Þ �

ið1þ �Þ

2
jj2j

2j2 ¼
�A

2
expði�stÞ

a1ðj2;j
�
2Þ ¼

1

2p

Z 2p

0

f ðw; _wÞe�it dt (5)

where a1ðj2;j
�
2Þ is the first coefficient in the Fourier series expansion of the nonlinear function of damping

f ðw; _wÞ. It is shown in Appendix A that a1ðj2;j
�
2Þ takes the following functional form:

a1ðj2;j
�
2Þ ¼ j2F ðjj2j

2Þ (6)

Therefore, Eq. (5) reads

_j1 þ
i�

2ð1þ �Þ
ðj1 � j2Þ ¼

�A

2
expði�stÞ

_j2 þ
i�

2ð1þ �Þ
ðj2 � j1Þ þ ð1þ �Þj2F ðjj2j

2Þ �
ið1þ �Þ

2
jj2j

2j2 ¼
�A

2
expði�stÞ (7)

Let us define new variables

~jj ¼ jj expð�i�stÞ; j ¼ 1; 2 (8)

and substitute into Eq. (7). This system is transformed to the autonomous form:

_~j1 þ i�s ~j1 þ
i�

2ð1þ �Þ
ð ~j1 � ~j2Þ ¼

�A

2

_~j2 þ i�s ~j2 þ
i

2ð1þ �Þ
ð ~j2 � ~j1Þ þ ð1þ �Þ ~j2F ðj ~j2j

2Þ �
ið1þ �Þ

2
j ~j2j

2 ~j2 ¼
�A

2
(9)

For the sake of brevity, the tilde mark appearing in Eq. (9) is omitted in further analysis. The fixed points of
Eq. (9) (corresponding to periodic response regimes of the initial system) are solutions of the following set of
algebraic equations:

i�sj10 þ
i�

2ð1þ �Þ
ðj10 � j20Þ ¼

�A

2

i�sj20 þ
i

2ð1þ �Þ
ðj20 � j10Þ þ ð1þ �Þj20F ðjj20j

2Þ �
ið1þ �Þ

2
jj20j

2j20 ¼
�A

2
(10)

From Eq. (10), one easily obtains the algebraic equation with respect to a single complex variable:

Gðjj20j
2Þj20 ¼

ð2�sþ 1ÞA

4sð1þ �Þ þ 2
(11)

Taking the complex conjugate of Eq. (11) yields the additional equation:

G�ðjj20j
2Þj�20 ¼

ð2�sþ 1ÞA

4sð1þ �Þ þ 2
(12)

where

G ¼ i
2�s2 þ s

2sð1þ �Þ þ 1
�
jj20j

2

2

� �
þ F ðjj20j

2Þ.

Multiplying Eq. (11) by j�20 and Eq. (12) by j20, and then multiplying the two equations, one obtains

Gðjj20j
2ÞG�ðjj20j

2Þjj20j
4 ¼

ð2�sþ 1Þ2A2

ð4sð1þ �Þ þ 2Þ2
jj20j

2 (13)
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Canceling jj20j
2 from both sides of Eq. (13) yields

Gðjj20j
2ÞG�ðjj20j

2Þjj20j
2 ¼

ð2�sþ 1Þ2A2

ð4sð1þ �Þ þ 2Þ2
(14)

Eq. (14) contains a single variable and should be solved for a specific shape of function G. Stability analysis
of the periodic regimes is straightforward (linearization of Eq. (7) around a given fixed point). For a particular
case of interest, this will be carried out in Section 3.

Previous studies [22–28] of similar systems have revealed the possibility for an alternative type of response in
the vicinity of 1:1 resonance, referred to as a strongly modulated response (SMR). In the present section, we
aim to extend the analytical description of the SMR presented earlier [26] to systems containing nonlinear
damping in the general form. As demonstrated in previous studies [22–28], the SMR is characterized by abrupt
changes in the amplitude of modulation of the response. The modulation profile consists of an interchange of
‘‘slow’’ and ‘‘super-slow’’ evolution peculiar to the relaxation type of motion [29–32].

Two time scales (‘‘slow’’ and ‘‘super-slow’’) in the averaged Eq. (9) are introduced as follows:
t0 ¼ t; t1 ¼ �t. Formally, the ‘‘slow’’ time scale is the same as fast oscillations of the initial system; the
term ‘‘slow’’ in this case reflects the rate of evolution of the averaged amplitudes without explicit definition of
additional small parameters. The ‘‘slow’’ system evolves on the fast time scale t0 ¼ t, and in the leading
approximation (�! 0) reads

_j1 ¼ 0

_j2 þ
i

2
ðj2 � j1Þ þ j2F ðjj2j

2Þ �
i

2
jj2j

2j2 ¼ 0 (15)

Therefore, in the leading approximation of slow system evolution, the variable j1 may be considered as
constant because it comes from the first equation of Eq. (15). Therefore, j1ðt1Þ depends only on time scale t1.
However, the variable j2 evolves on the slow time scale t0. The fixed points of the second equation of Eq. (15)
(denoted by F1; F2) depend only on the super-slow time scale t1 ðF1 ¼ F1ðt1Þ;F2 ¼ F2ðt1ÞÞ and obey the
algebraic equation:

i

2
ðF2 � F1Þ þ F2F ðjF2j

2Þ �
i

2
jF2j

2F2 ¼ 0 (16)

The algebraic relation given by Eq. (16) describes a super-slow invariant manifold (SIM) in four-
dimensional state space. For better visualization of the SIM structure, we derive the projection of Eq. (16) on
the (ðjF2j; jF1jÞ) plane. By simple algebraic manipulations, one obtains

jF2j
2ðð1� jF2j

2Þ
2
þ 4F ðjF2j

2Þ
2
Þ ¼ jF1j

2 (17)

It is quite obvious that the topological shape of the projection curve defined by Eq. (17) is governed by
F ðjF2j

2Þ, which depends on characteristics of the nonlinear damping.
The next step is investigation of super-slow evolution of the flow at the SIM. Introducing the super-slow

time scale t1 ¼ �t into Eq. (9) and considering the leading approximation (�! 0), one obtains the following
system (j1 ¼ F1ðt1Þ; j2 ¼ F2ðt1Þ):

F01 þ isF1 þ
i

2
ðF1 � F2Þ ¼

A

2

i

2
ðF2 � F1Þ þ F2F ðjF2j

2Þ �
i

2
jF2j

2F2 ¼ 0 (18)

The apostrophe denotes differentiation with respect to the super-slow time. The system given by Eq. (18) may
be reduced to single complex equation:

F02RðjF2j
2Þ � F0�2 HðF2;F�2Þ ¼ JðF2;F�2Þ

R ¼ 1� 2iF ðjF2j
2Þ � 2iF2FF2

ðjF2j
2Þ � 2jF2j

2
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H ¼ 2iF2FF�2 ðjF2j
2Þ þ F2

2

J ¼
A

2
� ð1þ 2sÞF ðjF2j

2ÞF2 þ
i

2
jF2j

2F2ð1þ 2sÞ � isF2 (19)

Up to this point, the treatment has been general. Further analysis is possible if the specific nonlinear
damping function is known. In the next section, we analyze the case of piecewise-quadratic damping.
3. Piecewise-quadratic damping

3.1. Model

Quadratic damping characteristics given by

f ¼ l _X j _X j (20)

are often considered for hydraulic damping devices [33] that are based on a flow of fluid through orifices in a
moving piston. We consider piecewise-quadratic damping characteristics given by

f ¼

l1 _X j _X j; Xoacr

l2 _X j _X j; X4acr

l24l1

8><
>: (21)

This type of damping characteristics is feasible in hydraulic dampers based on the same principle of orifice
flow with the addition of semi-active control [34]. Such damping can be realized in hydraulic dampers
containing several on/off orifice valves in a moving piston. Such a design is somewhat different from the
dampers considered in Ref. [34] for which the on/off orifice valves were installed outside the chamber of the
damper. During its motion, once the piston reaches some critical value of deflection (defined by the designer),
acr, some of the orifices are closed and thus the damping coefficient increases. When the piston hits the critical
value acr in the opposite direction, it simply reopens the closed orifices, thus bringing the damping coefficient
to its original value l1. A schematic example of such a damper is presented in Fig. 1.

Since the number of piston orifices and on/off orifice valves (as well as their diameter) may be varied, there
is certain flexibility in the choice of l1, l2 parameters. However, precise implementation of such a damper is
beyond the scope of the paper.
Fig. 1. Semi-active on–off orifice viscous fluid damper (concept).
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3.2. Analytical treatment

The system under investigation is described by the following nonlinear damping characteristics:

f ¼

l1ð _y1 � _y2Þjð _y1 � _y2Þj; jy1 � y2joacr

l2ð _y1 � _y2Þjð _y1 � _y2Þj; jy1 � y2j4acr

l24l1

8><
>: (22)

We begin the analytical study from a description of the periodic regimes of the system containing nonlinear
damping characteristics as given by Eq. (22), including stability analysis. Thus, from Eqs. (2)–(5), with the
damping function described by Eq. (22), the following averaged system (in a vicinity of 1:1 resonance) is
obtained:

_j1 þ
i�

2ð1þ �Þ
ðj1 � j2Þ ¼

�A

2
expði�stÞ

_j2 þ
i�

2ð1þ �Þ
ðj2 � j1Þ þ ð1þ �Þa1 �

ið1þ �Þ

2
jj2j

2j2 ¼
�A

2
expði�stÞ

a1 ¼

4l1j2jj2j

3p
; jj2joacr

j2

p
2ðl1 � l2Þ acr �

a3
cr

3jj2j
2

� �
þ

4

3
l2jj2j

� �
; jj2j4acr

8>>><
>>>:

(23)

Therefore,

F ¼

4l1jj2j

3p
; jj2joacr

1

p
2ðl1 � l2Þ a�

a3

3jj2j
2

� �
þ

4

3
l2jj2j

� �
; jj2j4acr

8>>><
>>>:

(24)

Writing Eq. (23) in an autonomous form according to Eq. (10), one obtains

_j1 þ i�sj1 þ
i�

2ð1þ �Þ
ðj1 � j2Þ ¼

�A

2

_j2 þ i�sj2 þ
i

2ð1þ �Þ
ðj2 � j1Þ þ ð1þ �Þj2F ðjj2j

2Þ �
ið1þ �Þ

2
jj2j

2j2 ¼
�A

2
(25)
3.2.1. Periodic responses

Applying Eq. (14) for the piecewise-quadratic damping case, one obtains the following algebraic equations
related to system periodic responses:

Gð1ÞGð1Þ
�

jj20j
2 ¼

ð2�sþ 1Þ2A2

ð4sð1þ �Þ þ 2Þ2
; jj2joacr

Gð2ÞGð2Þ
�

jj20j
2 ¼

ð2�sþ 1Þ2A2

ð4sð1þ �Þ þ 2Þ2
; jj2j4acr (26)

where

Gð1Þ ¼ i
2�s2 þ s

2sð1þ �Þ þ 1
�
jj20j

2

2

� �
þ F ð1Þ; Gð2Þ ¼ i

2�s2 þ s
2sð1þ �Þ þ 1

�
jj20j

2

2

� �
þ F ð2Þ
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In order to study the stability of the periodic response regimes, we develop variation equations near fixed
points determined by Eq. (14). For the sake of convenience, the term jj2j appearing in Eq. (24) is rewritten as
follows:

jj2j ¼
ffiffiffiffiffiffiffiffiffiffiffi
j2j

�
2

p
(27)

Substituting Eq. (27) into Eq. (24), one obtains

F ¼

4l1
ffiffiffiffiffiffiffiffiffiffiffi
j2j

�
2

p
3p

; jj2joacr

1

p
2ðl1 � l2Þ a�

a3

3j2j
�
2

� �
þ

4

3
l2

ffiffiffiffiffiffiffiffiffiffiffi
j2j

�
2

p� �
; jj2j4acr

8>>><
>>>:

Small perturbations around the fixed points of Eq. (25) (denoted by j10;j20) are considered as follows:

j1 ¼ j10 þ d1; j2 ¼ j20 þ d2 (28)

Linear perturbation equations near the fixed points j10;j20 are

_d1 þ i�sd1 þ
i�

2ð1þ �Þ
ðd1 � d2Þ ¼

�A

2

_d
�

1 þ i�sd�1 �
i�

2ð1þ �Þ
ðd�1 � d�2Þ ¼

�A

2

_d2 þ i�sd2 þ
i

2ð1þ �Þ
ðd2 � d1Þ þ ð1þ �Þd2F ðj20;j

�
20Þ

þ ð1þ �Þj20

qF

qj2

����
j20;j

�
20

d2 þ
qF

qj�2

����
j20;j

�
20

d�2

( )
� ið1þ �Þjj20j

2d2 �
ið1þ �Þ

2
j2
20d
�
2 ¼

�A

2

_d
�

2 � i�sd�2 �
i

2ð1þ �Þ
ðd�2 � d�1Þ þ ð1þ �Þd

�
2F ðj20;j

�
20Þ

þ ð1þ �Þj�20
qF

qj2

����
j20;j

�
20

d�2 þ
qF

qj�2

����
j20;j

�
20

d2

( )
þ ið1þ �Þjj20j

2d�2 þ
ið1þ �Þ

2
j�20d

�
2 ¼

�A

2
(29)

This system of equations should be solved separately for two domains of the damping function F ð1Þ and F ð2Þ

depending on the particular value of jj2j. Asymptotic stability of the periodic responses is determined by the
eigenvalues of the Jacobian of the linear system (29). As one would expect, generic Hopf and saddle-node
bifurcations were observed, and these are marked on the frequency-response diagrams (describing the
amplitude of j2 as a function of frequency detuning) by ‘‘H’’ and ‘‘SN’’, respectively (Figs. 2a and b).

3.2.2. Strongly modulated response (SMR)

We proceed with construction of the SIM projection (on the ðjF1j; jF2jÞ plane) using Eq. (17). Contrary to
the previously studied cases where the damping coefficient F ðjj2j

2Þ was uniform (the same functional
expression), for the piecewise-quadratic damping case, F ðjj2j

2Þ changes its functional expression when jj2j

crosses the critical threshold value acr. Consequently, we should consider this change when describing the SIM
approximation and mechanism of relaxation. Constructing the SIM projection, we apply Eq. (17) separately
for each interval of jj2j. Thus, drawing the SIM projection for the interval jj2joacr we have:

jF2j
2ðð1� jF2j

2Þ
2
þ 4F ð1ÞðjF2j

2Þ
2
Þ ¼ jF1j

2 (30)

Similarly, for the interval jj2j4acr:

jF2j
2ðð1� jF2j

2Þ
2
þ 4F ð2ÞðjF2j

2Þ
2
Þ ¼ jF1j

2 (31)

where F ð1Þ and F ð2Þ are determined in Eq. (24).
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Fig. 2. Frequency-response curves: (a) quadratic damping case ðA ¼ 1:2; l1 ¼ l2 ¼ 0:2; � ¼ 0:01; acr ¼ 0:8Þ and (b) piecewise-quadratic

damping case ðA ¼ 1:2; l1 ¼ 0:2; l2 ¼ 6; � ¼ 0:01; acr ¼ 0:8Þ. Solid lines refer to stable solutions where dashed lines refer to unstable

ones.
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To illustrate the SIM projections for the discussed case of piecewise-quadratic damping, we fix the values of
l1 and acr, varying the values of l2 only. In Fig. 3, we plot the SIM projections for two distinct values of acr

(acr ¼ 0:8; acr ¼ 1:1).
One of the SIM curves presented in both plots of Fig. 3 refers to the case of pure quadratic damping

(l2 ¼ l1). As observed in both diagrams of Fig. 3, as l2 grows, all SIM curves bend more and more towards
the critical value (acr, marked with the vertical dashed line on the diagrams). Therefore, despite the increase of
one of the damping components, it is possible (by the appropriate choice of acr) to preserve the SIM projection
curve in a folded form necessary for relaxation oscillations (the SMR). In order to keep the SIM projection
curve folded, acr should be picked above the lower fold of the curve.

In order to describe the super-slow evolution of the system on the stable branches of the SIM, we refer to
Eq. (19). Splitting into modulus and argument, F2 ¼ Nðt1Þ expðiyðt1ÞÞ, one obtains a 2-dof reduced flow
system in polar coordinates. If Noacr the super-slow system reads

F ¼
4l1N

3p
,

a11 ¼ 1� 3N2; a12 ¼ 2NF ; a21 ¼ �2 F þ
dF

dN
N

� �
; a22 ¼ N �N3

f 1 ¼ �ð2sþ 1ÞFN þ
A

2
cos y;

f 2 ¼ sþ
1

2

� �
ðN3 �NÞ þ

N

2
�

A

2
sin y

N 0 ¼
f 1a22 � f 2a12

a11a22 � a12a21
; y0 ¼

f 2a11 � f 1a21

a11a22 � a12a21
(32a)
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Fig. 3. SIM projections: (a) l1 ¼ 0:2; acr ¼ 0:8; l2 ¼ 0:2; 6; 20 and (b) l1 ¼ 0:2; acr ¼ 1:1; l2 ¼ 0:2; 20. Solid lines refer to stable

branches of SIM when the dashed lines refer to unstable ones.
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If N4acr, the super-slow system reads

F ¼
1

p
2ðl1 � l2Þ acr �

a3
cr

3N2

� �
þ

4

3
l2N

� �
,

a11 ¼ 1� 3N2; a12 ¼ 2NF ; a21 ¼ �2 F þ
dF

dN
N

� �
; a22 ¼ N �N3

f 1 ¼ �ð2sþ 1ÞFN þ
A

2
cos y;

f 2 ¼ sþ
1

2

� �
ðN3 �NÞ þ

N

2
�

A

2
sin y

N 0 ¼
f 1a22 � f 2a12

a11a22 � a12a21
; y0 ¼

f 2a11 � f 1a21

a11a22 � a12a21
(32b)

Denoting the numerators and denominator of the right-hand side of system given by Eq. (32) by f 1ðN; yÞ for
the first equation, f 2ðN; yÞ for the second equation, and gðNÞ for the denominator, the system of Eqs. (32a)
and (32b) is presented in the following form:

qN

qt
¼

f 1ðN; yÞ
gðNÞ

qy
qt
¼

f 2ðN; yÞ
gðNÞ

(33)
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Fig. 4. Phase portrait. System parameters are (l1 ¼ 0:2; l2 ¼ 8, acr ¼ 0:8; s ¼ 0; A ¼ 0:5). Diamonds on the fold lines refer to the folded

singularities.
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Rescaling time by the function g(N) yields the super-slow flow equations:

N 0 ¼ f 1ðN; yÞ

y0 ¼ f 2ðN; yÞ (34)

The phase portrait of the system given by Eqs. (32a) and (32b) is presented in Fig. 4 (system parameters:
l1 ¼ 0:2; l2 ¼ 6; acr ¼ 0:8; s ¼ 0; A ¼ 0:5). Fold curves N1, N2 are marked on the phase portrait as bold
lines.

Observing the phase portrait presented on Fig. 4, one can identify the pair of folded foci on the lower fold.
These folded singularities are denoted by diamonds on the figure. There are no other fixed points for this
particular set of system parameters. An additional peculiarity of the phase portrait that should be noted is the
existence of trajectories that end at the fold lines on both stable branches of the SIM. As was demonstrated
earlier [23,24,26], this fact suggests the possible existence of relaxation type motion or the SMR. In order to
determine the existence of the SMR, we construct one-dimensional mapping diagrams in a manner described
in Ref. [26]. In describing the process of one-dimensional mapping diagram construction, we will briefly repeat
the analysis carried out in Ref. [26].

From the phase portrait presented in Fig. 4, we can see that there is an interval of y (on the lower fold line
N1) for which all phase trajectories can arrive to and jump from N1. This interval is bounded by the folded
singularities (for the case illustrated on Fig. 4, these folded singularities are stable foci marked with diamonds
on the figure). We denote this interval by R ¼ ½Y1;Y2�, where Y1;Y2 are the folded singularities that
constitute the boundaries of the jump interval. In the regime of the relaxation oscillations, the phase trajectory
jumps from a point of this interval to the upper branch of the SIM, then it moves along the line of the super-
slow flow to the upper fold line, then jumps back to the lower branch and moves to the lower fold line,
commencing on one of the points of the interval R in order to enable the next jump. Therefore, it is natural to
consider this regime as a mapping of the interval R into itself—the regime of the relaxation oscillations will
correspond to attractor of this one-dimensional map. The existence of this attractor is therefore a necessary
and sufficient condition for existence of the SMR for the system given by Eq. (3.3) when the mass ratio e is
small enough.
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In order to construct the relevant map, we should separately consider the ‘‘super-slow’’ and the ‘‘slow’’ parts
of the mapping cycle. As for the ‘‘super-slow’’ parts on the lower and the upper branches of the SIM, we can
use Eqs. (32a) and (32b) and directly connect the ‘‘entrance’’ and ‘‘exit’’ points by numeric integration. As for
the ‘‘slow’’ parts, the function j2 should be continuous at the points of contact between the ‘‘slow’’ and the
‘‘super-slow’’ parts. Therefore, for the ‘‘slow’’ parts of the motion, one exploits the complex invariant F1ðtÞ,
which can be expressed by Eq. (16), providing

F2 � 2iF2F ðjF2j
2Þ � jF2j

2F2 ¼ F1ðt1Þ (35)

where F is given by Eq. (24).
If one knows its value at the point of the ‘‘jump’’ at the fold line, it is possible to compute N and y for the

point of ‘‘finish’’ unambiguously and thus to complete the mapping. Let us denote the point of finish by
ðNx; yxÞ and the start point on the jump interval R as ðN0; y0Þ (N0 ¼ N1, since the jump interval belongs to the
lower fold N1 ). Contrary to the previously considered cases [22–28] (linear damping), we deal here with the
piecewise-quadratic damping case. Therefore, acr may be situated between the folds ðN1;N2Þ (see Fig. 3a, for
example). Therefore, the jump from one stable branch to another results in crossing acr, causing the function F

to change its form. This case is illustrated in Fig. 3a. In this case, the function describing the upper stable
branch of SIM is rather complicated, and therefore we cannot derive the closed form solution for Nx; yx. In
order to make the analysis of jumps more clear, we present the algorithm for calculation of the Nx; yx pair for
two values of acr, namely N1oacroN2; N2oacr (Appendix B).

Not every trajectory that starts from the lower fold of the SIM will reach the initial interval (R ¼ ½Y1; Y2�),
since it can go to the alternative attractor at the upper or the lower branch of the SIM if it exists. Only those
Fig. 5. One-dimensional return maps diagram: (a) s ¼ 0 and (b) s ¼ 1. Rest system parameters: A ¼ 0:5; l1 ¼ 0:2; l2 ¼ 8; acr ¼ 0:8.
Bold line refers to the stable cycle of the map.
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Fig. 6. Frequency-response diagram. Frequency-detuning interval for SMR existence is marked with thin dashed vertical lines. Bold curve

refers to the periodic regimes solution. Bold dashed lines relate to the unstable solutions. System parameters: A ¼ 0:5; l1 ¼ 0:2;
l2 ¼ 8; acr ¼ 0:8; � ¼ 0:01.
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points that are mapped into the interval R can carry sustained relaxation oscillations. To illustrate this, two
return maps were constructed for different values of frequency detuning (s ¼ 0, s ¼ 1) (see Fig. 5).

Fig. 5 depicts the resulting one-dimensional return map from R into R. Analyzing the results of Fig. 5, one
can easily conclude that the map illustrated in Fig. 5a indicates the existence of the SMR response related to
the stable cycle on the map (this cycle is marked with a bold line in Fig. 5a). The map of Fig. 5b contains no
stable cycle, and therefore no SMR response exists in the system for s ¼ 1. Therefore, using these maps for
various values of system parameters, one can determine the parametric zones of existence of the SMR by this
semi-analytical procedure. The frequency-detuning interval for which SMR response exists is depicted below
on the frequency-response curve (Fig. 6) for the same set of system parameters: A ¼ 0.5, l1 ¼ 0.2, l2 ¼ 8,
acr ¼ 0.8, e ¼ 0.01.

4. Tuning of piecewise-quadratic damping to prevent undesired periodic regimes

4.1. Concept of tuning

As demonstrated in previous studies, attaching the NES to the main linear system subject to harmonic
excitation may be a rather effective method for vibration mitigation. Apparently, existence of a cubic
nonlinearity in the system may cause the appearance of additional branches of the undesired periodic
responses, resulting in high amplitude excitations of the entire system. Thus, effective regimes may coexist with
ineffective ones. Therefore, our goal is to preserve the effective regimes from the point of view of vibration
suppression (e.g., SMR and the periodic regimes of the lower branch of the frequency-response curve), and at
the same time, to eliminate the destructive ones.

To achieve this, we should obey the principles listed below for correct tuning of the piecewise damping:
1.
 Set up l2 to be essentially higher then l1 (l24l1). This can destroy the stable branches of the periodic
regime that pertain to the high amplitude vibration regime (for the coordinate of the relative displacement
y1 � y2). It will be demonstrated that, at these stable branches, not only does the relative displacement
coordinate have a relatively large amplitude of vibration, but the main mass does also.
2.
 Set up acr in such a way to obtain periodic attractors only in the region below acr. Otherwise, high-
amplitude periodic responses at the upper branch of the SIM will jeopardize the vibration suppression. In
some cases, this is not possible, as will be discussed below.



ARTICLE IN PRESS
Y. Starosvetsky, O.V. Gendelman / Journal of Sound and Vibration 324 (2009) 916–939928
3.
 The value of acr will be higher than the value of the lower fold of the SIM (N1oacr). This is necessary for
the existence of the SMR. Otherwise, the system will have only periodic or quasiperiodic responses.

4.2. Drawbacks of linear and quadratic damping characteristics

We begin with an example with constant value of amplitude of excitation (A ¼ 0:4).
As demonstrated earlier [23,24] for the case of linear damping characteristics, the necessary condition for

the SMR response to exist is 0olo1=
ffiffiffi
3
p

for arbitrary amplitude of excitation. Since the restriction on
damping coefficient constitutes only the necessary condition, then for some values of the external forcing, this
range can become smaller. It should be noted that gradually increasing the value of damping (up to l ¼ 1=

ffiffiffi
3
p

)
causes weakening of the undesired response; however, it also weakens the SMR response, making it less
effective and less robust.

Choosing the values of l ¼ 0.2, 1, let us plot the frequency-response diagrams for the fixed value of the
external forcing amplitude A ¼ 0.4 (Fig. 7). The interval of the SMR existence is also marked.

Observing the frequency-response diagrams in Fig. 7, one can note that increasing the value of damping
above some critical value in a range lcrp1=

ffiffiffi
3
p

results in disappearance of the SMR. We can also observe
the vanishing of the branch of undesired response. To illustrate this, we present the time series plot (Figs. 8a
and b) (for the deflection of the main mass as a function of time) for l ¼ 0.2 and 1; the other parameters are
A ¼ 0:4; s ¼ 0; � ¼ 0:01.

The results presented in Fig. 8 demonstrate that the SMR response is better for vibration suppression than
the simple periodic regime obtained for the same set of system parameters, but for the increased value of
damping. Effectiveness of the SMR regime becomes more visible with the growth of the external forcing
Fig. 7. Frequency-response diagram for a linear damping case. Frequency-detuning interval for the SMR existence is marked with thin

dashed vertical lines. Bold curve refers to the periodic regimes solution. Bold dashed lines relate to the unstable solutions: (a) l ¼ 0:2 and

(b) l ¼ 141=
ffiffiffi
3
p

. Amplitude of excitation A ¼ 0.4.
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Fig. 8. Time series: (a) system vibrates in SMR regime for l ¼ 0:2 and (b) simple periodic response (no SMR exists) for l ¼ 1. System

parameters: A ¼ 0:4; s ¼ 0; � ¼ 0:01.

Fig. 9. Time series: (a) system vibrates in SMR regime for l ¼ 0:2 and (b) simple periodic response (no SMR exists) for l ¼ 2:5. System
parameters: A ¼ 0:8; s ¼ 0; � ¼ 0:01.
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amplitude, as illustrated in Fig. 9 for A ¼ 0.8 (the other parameters remain the same—s ¼ 0; � ¼ 0:01). The
first damping coefficient was chosen to enable the existence of the SMR (l ¼ 0:2), while the second one was
picked to eliminate the branch of undesired periodic regimes (l ¼ 2:5).

Observing the time series plots in Fig. 9, one also can note the preference for the SMR over the simple
periodic response regime even for a relatively small value of the forcing amplitude. Therefore, summarizing the
results, we conclude that, by increasing the damping coefficient, we can weaken and even totally annihilate the
branch of the undesired response. However, the remaining periodic regimes become more and more inefficient
(in a sense of vibration suppression) with the growing values of damping coefficient and also the amplitudes of
excitation.

In the case of simple quadratic damping, the frequency-response curves are qualitatively the same and are
not demonstrated here. When analyzing quadratic damping, one obtains the same result: for relatively small
damping values, the branches of the undesired responses exist; however, increases in the damping coefficient
cause elimination of the undesired branches together with the desired responses (e.g., the SMR). In the
following subsection, we demonstrate the ability of piecewise-quadratic damping to preserve the robustness of
the effective SMR response and totally annihilate the undesired branches.
4.3. Tuning the damper with piecewise-quadratic characteristics

Let us consider the same system parameters as in the example of the previous subsection (A ¼ 0:4; l ¼ 0:2).
As demonstrated in the previous section, we need to determine the coefficients of the piecewise-quadratic
damping (l1; l2) as well as the acr value to eliminate the undesired periodic response and also to preserve the
SMR response. Following the first principle of tuning listed in Section 4.1, we assign l1 the value of linear
damping for which the SMR exists: l1 ¼ 0:2 (see previous, Section 4.2). According to the same principle, we
assign l2 a value that is much higher than l1 to obey (l24l1) l2 ¼ 8. We set the value of acr according to
Fig. 10. Frequency-response diagrams: (a) quadratic damping case l2 ¼ l1 ¼ 0:2 and (b) piecewise-quadratic damping case

l2 ¼ 6; l1 ¼ 0:2. Rest system parameters: A ¼ 0:4; � ¼ 0:01.
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principles 2 and 3. Therefore, the value of acr will be situated between the branch of the undesired periodic
response and the lower branch of the periodic response to fulfill principle 2. Determination of acr also requires
accounting for the third principle. Therefore, acr should also obey (acr4N1 ¼ 0:595). Satisfying the
requirements of principles 2 and 3, we pick the value of acr to be acr ¼ 1:1. We illustrate the results of tuning
via the frequency-response plot (Figs. 10a and b). For pure quadratic damping (l2 ¼ l1 ¼ 0:2), this is plotted
in Fig. 10a; for piecewise-quadratic damping (l1 ¼ 0:2; l2 ¼ 8) it is plotted in Fig. 10b. The interval of the
SMR is also marked on both plots of Fig. 10.

Comparing the frequency-response diagram of the quadratic case to the piecewise-quadratic one, we note
the absence of the branch of undesired periodic responses in the latter case. It is also clear from these diagrams
that the frequency interval of the SMR existence is preserved. From the point of view of the tuning guidelines
given in Section 4.1, all principles for proper tuning are obeyed, namely l2 4l1 and thus the first principle is
fulfilled. Recommendation 2 is satisfied since there are no periodic attractors above the value of acr. Finally,
recommendation 3 is satisfied since the value of acr has been picked as above the lower fold N1, thus allowing
relaxation type motion (SMR).

In the following figure, we plot the frequency-response diagrams for piecewise-quadratic damping
coefficients tuned for various values of external forcing amplitudes.

It is clear from Figs. 11a–c, that, for the given values of external forcing amplitude (A ¼ 0:6; 0:8; 1),
piecewise-quadratic damping may be tuned to prevent undesired periodic responses and also to preserve the
effective regimes. However, for increased values of the amplitude of excitation A ¼ 1:241, as from the
diagram of Fig. 11d, the second principle of tuning is violated. To understand the encountered problem of
tuning for the case illustrated on Fig. 11d, we study the case of simple quadratic damping for the same value of
Fig. 11. Frequency-response diagrams: (a) A ¼ 0.6, tuning parameters: l1 ¼ 0:2; l2 ¼ 8; acr ¼ 1; (b) A ¼ 0.8, tuning parameters: l1 ¼
0:2; l2 ¼ 8; acr ¼ 1; (c) A ¼ 1, tuning parameters: l1 ¼ 0:5; l2 ¼ 18; D : acr ¼ 1:05; and (d) A ¼ 1.2, tuning parameters: l1 ¼ 0:2; l2 ¼ 1;
acr ¼ 0:8.
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Fig. 12. Frequency-response diagram (A ¼ 1:2; l1 ¼ l2 ¼ 0:2).
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forcing amplitude, A ¼ 1.2. Therefore, for the sake of comparison, we plot the frequency-response diagram
for a quadratic damping case (Fig. 12).

As seen from the diagram at Fig. 12, the branch of undesired periodic response merges with the lower
branch. As demonstrated in Ref. [27], the coalescence of the branches occurs at about A � 1. In this case, it is
impossible to find an appropriate set of tuning parameters (l1; l2; acr) to obey the second principle without
changing other system parameters of tuning (e.g., stiffness of strongly nonlinear spring) since the stable
periodic attractors appear in the region above acr. Therefore, despite the fact that an increase in l2 value brings
about the decrease of the undesired branch, it does not eliminate it entirely. Existence of the stable attractors
on the upper region (above acr) adversely affects the SMR response due to the increased value of damping as
compared to the simple quadratic case (Fig. 12). This can be viewed by comparing the regions of the SMR
responses between the piecewise-quadratic damping case (Fig. 11d) and the quadratic damping case (Fig. 12).
The SMR interval for the quadratic case in Fig. 12 is larger than the one related to the piecewise-quadratic one
(Fig. 11d). However, the advantage of piecewise-quadratic damping for the considered case lies in minimizing
the frequency band for which the undesired responses may occur. Therefore, the preference for piecewise-
quadratic damping on the quadratic one is apparent for a certain range of forcing amplitudes, namely
(Ap1:05). A tradeoff exists between the quadratic and piecewise-quadratic cases for relatively high values of
the forcing amplitudes, as illustrated in the last example for A41:05.

There exists an additional option for tuning of the NES comprising the piecewise-quadratic damping—
tuning the nonlinear stiffness k. An example for this case is presented in the following section of numerical
verifications and simulations. It is always possible (for an arbitrary value of forcing amplitude A) to set up the
piecewise-nonlinear damping parameters (l1; l2; acr) and the stiffness k to eliminate the undesired branch of
the periodic regimes. This can be viewed by realizing that, in the quadratic damping case, it is possible to scale
the parameters of damping and nonlinear stiffness for any value of A to obtain the frequency-response curve
suitable for ideal tuning (according to all the listed principles). Specifically, the frequency-response curve will
contain the branches of both periodic regimes with no coalescence. Therefore, the value of acr may be picked
between the branches of periodic regimes, thus providing a guarantee for fulfillment of all the tuning principles
by appropriate choice of l1; l2 (l24l1). In the current paper, the tuning of piecewise-quadratic damping
characteristics is performed under the fixed value of nonlinear stiffness (k ¼ 4�=3).

5. Numerical verifications and simulations

The goal of this section is to numerically verify the analytical models developed above as well as to check the
performance of the piecewise-quadratic damper. For this sake, we study the responses of the systems under
investigation in the space of initial conditions with the help of the Monte Carlo method.
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In the first three simulations, we generated a random dataset of one hundred random vectors. A vector
contains a set of four random numbers zj ; j ¼ 1 . . . 4 (randomly chosen in a range ½�2; 2�) assigned as initial
conditions to the system of (1.1) (y1ð0Þ ¼ z1; _y1ð0Þ ¼ z2; y2ð0Þ ¼ z3; _y2ð0Þ ¼ z4). Thus, each vector constitutes
the initial condition for Eq. (1) which is integrated numerically. Therefore, the original system (Eq. (1)) is
subjected to one hundred initial conditions for some fixed value of the frequency detuning s and other
parameters. Frequency detuning s is varied with a constant step of 0.1 and, for each step of s, the initial
system is integrated for the aforementioned random choice of initial conditions. This simulation was
performed both for simple linear damping and for the tuned piecewise-quadratic damping. All simulations for
these two cases are illustrated in Figs. 13 and 14, respectively, and numerically derived periodic regimes are
marked with circles, while the SMR regime is marked with a diamond. The shade of each marker in Figs. 13
Fig. 13. Numerical simulation for a linear damping case (A ¼ 0:8; l1 ¼ l2 ¼ 0:2; � ¼ 0:01). SMR regime is denoted with diamonds,

periodic regimes are denoted with circles. Thin solid lines refer to analytical solutions of the periodic regimes. The shade of each marker is

proportional to the relative number of initial conditions, for which the system is attracted to the particular response regime. Interval of

SMR existence is delimited by vertical dashed lines. The WMR was not observed in the simulations.

Fig. 14. Numerical simulation for a piecewise-quadratic damping case (A ¼ 0:8; l1 ¼ 0:2; l2 ¼ 6, acr ¼ 1; � ¼ 0:01). SMR regime is

denoted with diamonds, periodic regimes are denoted with circles. Thin solid lines refer to analytical solutions of the periodic regimes The

shade of each marker is proportional to the relative number of initial conditions, for which the system is attracted to the particular

response regime. Interval of SMR existence is delimited by vertical dashed lines. The WMR was not observed in the simulations.
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and 14 is proportional to the relative number of initial conditions, for which the system is attracted to the
particular response regime. The analytically predicted interval of SMR existence as well as the analytical
frequency-response curve of the periodic regimes is also shown in the plots of Figs. 13 and 14. The interval of
SMR existence (obtained with the help of the one-dimensional mapping) is delimited by dashed vertical lines
on the diagrams. It is also important to emphasize that a weakly modulated response (due to a Hopf
bifurcation) was not observed. The deflection in a case of SMR response (marked on the frequency-response
diagrams of Figs. 13 and 14 with diamonds) is taken as a maximal relative displacement y1 � y2.

The results illustrated in the diagrams (Figs. 13 and 14) demonstrate fairly good correspondence between
the analytically predicted interval of the SMR response and numerical simulation, and the analytical
frequency-response curve of the periodic regimes solutions also agrees with the numeric results.

Comparing the diagram of the linear damping case (Fig. 13) with a piecewise-quadratic one (Fig. 14), one
can notice the absence of the branch of undesired periodic response for the piecewise-quadratic damping cases.
Thus, only the SMR and the lower branch of the periodic response exist. Because it comes from the diagram of
the linear damping case (Fig. 13), there is a certain interval of the frequency band (s 2 ½�1:5;�0:7�) for which
the undesired periodic response becomes robust and almost all trajectories of the random initial data are
attracted to it. This can be viewed by inspecting the brightness of the markers related to the undesired response
branch. Therefore, as long as the branch of the robust undesired periodic response exists, the NES spoils the
response instead of improving it. It is apparent from Figs. 13 and 14 that, for a given value of forcing
amplitude, piecewise-quadratic damping characteristics substantially improve the performance of the NES by
preventing undesired responses.

Up until now, the term ‘‘undesired periodic response’’ was somewhat vague, since the branch of the
response was presented as the amplitude of the relative displacement between the main mass and the NES
(y1 � y2) vs. frequency. However, when speaking about the vibration suppression, one should be interested in
the amplitude of the displacement of the main mass rather then the relative displacement amplitude. In order
to demonstrate that the discussed branch of the undesired response is undesired indeed (in a sense of vibration
suppression), the frequency-response diagrams were constructed as the amplitude of the main mass (y1)
deflection vs. frequency. Figs. 15 and 16 refer to the linear and piecewise-quadratic damping characteristics,
respectively.

Observing the diagram referred to in the linear damping case (Fig. 15), it is clear that the branch of the
undesired response corresponds to relatively high amplitudes of the main oscillator. These regimes definitely
should be avoided. Unlike the linear damping case, we can see the existence of the beneficial regimes
only (SMR and lower branch periodic response) for the case of piecewise-quadratic damping characteristics
(Fig. 16).
Fig. 15. Numerical simulation for a linear damping case (A ¼ 0:8; l1 ¼ l2 ¼ 0:2; � ¼ 0:01). SMR regime is denoted with diamonds,

periodic regimes are denoted with circles.
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Fig. 16. Numerical simulation for a piecewise-quadratic damping case (A ¼ 0:8; l1 ¼ 0:2; l2 ¼ 10, � ¼ 0:01). SMR regime is denoted with

diamonds, periodic regimes are denoted with circles.

Fig. 17. Frequency-response diagrams for NES and TMD. Response of system with the NES is denoted by circles; the same for the TMD

is denoted by a thin line (A ¼ 0:8; l1 ¼ 0:2; l2 ¼ 10; ka ¼ 4=3; a ¼ 1:55, � ¼ 0:1).
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Comparison of the NES containing piecewise-quadratic damping with a tuned mass damper (TMD, tuned
according to Ref. [2]) is illustrated in Figs. 17 and 18 for two distinct values of forcing amplitudes A ¼ 0.8;
A ¼ 1.6, correspondingly.

In order to compare the response regimes of TMD with those of the NES (which may appear with varying
amplitude of modulation, e.g., the SMR), the amplitudes were averaged. The results illustrated in Fig. 18
correspond to a relatively high forcing amplitude (A ¼ 1:641). Therefore, as mentioned in the previous
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Fig. 18. Frequency-response diagrams for NES and TMD. Response of system with the NES is denoted by circles; the same for the TMD

is denoted by a thin line ðA ¼ 1:6; l1 ¼ 0:2; l2 ¼ 10; ka ¼ 0:25; a ¼ 2:3; � ¼ 0:1Þ.

Y. Starosvetsky, O.V. Gendelman / Journal of Sound and Vibration 324 (2009) 916–939936
section, in this case, an optimization of the NES is performed on both nonlinear damping and nonlinear
stiffness of the spring (connecting the NES with a primary mass).

As one can see by observing the frequency-response diagrams of Figs. 17 and 18, vibration suppression for
the case of the main mass deflection (y1) is almost the same for both absorbers. However, examining the
deflection of absorber (y2) for both cases (TMD, NES), it is obvious from the diagrams (Figs. 17 and 18) that
the NES exhibits essentially lower average displacements. This advantage of the NES arises due to the use of
piecewise-quadratic damping.

6. Conclusions

A linear oscillator subject to harmonic excitation (with small amplitude of order e) and attached to the NES
with nonlinear damping has been considered. General analytical treatment was carried out for the system with
nonlinear damping of a general type, thus providing the analytical tools used to estimate system response
regimes for any particular type of nonlinear damping characteristics. Particular damping characteristics
treated in the paper are of the piecewise-quadratic type. It was demonstrated that a properly tuned NES with
piecewise-quadratic damping characteristics is able to completely annihilate dangerous periodic regimes
arising due to the nonlinearity of the system. Thus, only regimes with efficient vibration absorption (SMR,
simple periodic regimes of low amplitudes) remain. Performance of the NES with piecewise-quadratic
damping characteristics was compared to the TMD (tuned mass damper). The amount of energy transferred
from the main mass (linear oscillator) is almost the same for both absorbers, although the deflection of the
NES is much lower than that of the TMD.

It is important to emphasize that the main expected advantage of the NES were observed when it was
applied to linear multi-dof systems (with remote frequencies), as demonstrated in Ref. [28]. It was shown that
the SMR may be excited in the vicinity of each natural frequency (under excitation), thus providing a
substantial reduction of energy for the main mass as compared to the TMD case (which may be tuned to a
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single frequency only). However, the major drawback of NES application was the existence of dangerous
periodic regimes. The authors believe that the idea presented in this paper of piecewise-quadratic damping will
allow the elimination of undesired regimes in the Mdof systems, thus making NES preferable for certain
ranges of the forcing amplitudes.
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Appendix A

In order to show that a1ðj2;j
�
2Þ ¼ j2F ðjj2j

2Þ, let us consider the definition of a1ðj2;j
�
2Þ given in Eq. (5):

a1 ¼

Z 2p

0

f ðw; _wÞe�it dt (A.1)

Expressing w, _w in terms of j2;j
�
2 and introducing it into Eq. (A.1), we obtain
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e�it dt (A.2)

Making the following change of variable:

z ¼ j2 e
it (A.3)

Substitution of Eq. (A.3) into Eq. (A.2) provides

a1 ¼ �ij2
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� �
;
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dz

z2
¼ j2F ðjj2j

2Þ (A.4)

Appendix B

Algorithm for calculation of an Nx; yx pair for the first case ðN1oacroN2Þ:

Stage 1: Calculate the Nx value:
Nx value (for the jump from the lower stable branch to the upper one) may be calculated from the

polynomials (30, 31) by obeying the invariance of j1ðtÞ related to the fast jump. Thus, exploiting the
invariance of the j1ðtÞ, one obtains

Z1ðð1� Z1Þ
2
þ 4F ð1ÞðZ1Þ

2
Þ ¼ Zxðð1� ZxÞ

2
þ 4F ð2ÞðZxÞ

2
Þ ¼ jj1j

2

Z1 ¼ N2
1; Zx ¼ N2

x (B.1)

Therefore, the Nx value depends only on N1. Due to the complexity of Eq. (B.1), the Nx value is calculated
numerically (e.g., Newton–Raphson method).

Stage 2: Calculate the yx value:
Similarly, using the property of the invariance of j1ðtÞ, it is possible to express the yx value via N1, Nx,

and y0:

yx ¼ tan�1
8l1N1ð1�N2

xÞ þ 6pF ð2ÞðN2
1 � 1Þ

3pðN2
1 � 1Þð1�N2

xÞ � 16l1N1F ð2Þ

 !
þ y0 (B.2)

Since Nx is a function of N1 only, then for each start point on the fold, the angle y0 is shifted by a constant
value of tan�1ð8l1N1ð1�N2

xÞ þ 6pF ð2ÞðN2
1 � 1Þ=3pðN2

1 � 1Þð1�N2
xÞ � 16l1N1F ð1ÞÞ and the N1 is mapped

to Nx.
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Algorithm for calculation of an Nx, yx pair for the second case ðN2oacrÞ:

Stage 1: Calculate the Nx value:
Calculation of the Nx value for the second case ðacr4N2Þ is not as straightforward as it appeared for the first

case. Before we proceed with a final Nx calculation, we should first check the location of the acr value relative
to the unknown Nx value. If the Nx value is situated below the acr value, then the upper stable branch of the
SIM (branch of the trajectory arrival) is not affected by the change in the functional form of F (from F ð1Þ to
F ð2Þ). On the other hand, if the Nx value is situated above the acr, then the upper stable branch of the SIM is
affected by the change in the functional form of F, and therefore it should be taken into account in the
calculation. In that case, an additional stage is added to the algorithm:

Additional stage: Establish the correct location of Nx relative to acr

First, we verify the location of acr relative to the Nx calculated for the homogenous functional form (as if
there was no change in the functional form of F) of F ¼ F ð1Þ for both the upper and lower branches of SIM.
As usual, the Nx value may be calculated by obeying the invariance of j1ðtÞ for the fast jump. Thus, exploiting
the invariance of j1ðtÞ, one obtains

Z1ðð1� Z1Þ
2
þ 4F ð1ÞðZ1Þ

2
Þ ¼ Zxðð1� ZxÞ

2
þ 4F ð1ÞðZxÞ

2
Þ ¼ jj1j

2

Z1 ¼ N2
1; Zx ¼ N2

x (B.3)

Note that, on both sides of Eq. (3.19), we use the same homogenous form of F ¼ F ð1Þ. Calculating the
intermediate value of Nx, we compare it with the value of acr. If the value of Nx is lower than acr ðNxoacrÞ,
then algorithm stops and the calculated Nx is the value we are looking for. Otherwise, the value of Nx should
be recalculated using Eq. (B.1).

Stage 2: Calculate the yx value:
First sub-case ðNxoacrÞ:
Similarly, using the property of the invariance of j1ðtÞ, it is possible to express the yx value via N1, Nx,

and y0:

yx ¼ tan�1
8l1N1ð1�N2

xÞ þ 6pF ð1ÞðN2
1 � 1Þ

3pðN2
1 � 1Þð1�N2

xÞ � 16l1N1F ð1Þ

 !
þ y0 (B.4)

Since Nx is a function of N1 only, then for each start point on the fold the angle, y0 is shifted by a constant
value of tan�1ð8l1N1ð1�N2

xÞ þ 6pF ð1ÞðN2
1 � 1Þ=3pðN2

1 � 1Þð1�N2
xÞ � 16l1N1F

ð1ÞÞ and the N1 is mapped
to Nx.

Second sub-case ðNx4acrÞ:
In this case, the yx value is determined by Eq. (B.2).
The described algorithm contains only the calculations of the jump from lower stable branch of SIM to the

upper one. The jump from the upper branch to the lower one is calculated in a similar way. The procedure of
numerical integration should be performed twice, for both stable branches of the SIM. Two invariants should
be computed for two ‘‘fast’’ jumps in order to determine their final points. It should be stressed that only one
computation cycle of the mapping for each point of the initial interval is required. This idea of mapping is
close to that used in paper [30] for the analysis of chaotic attractors of relaxation oscillations in the state space
of lower dimensionality.
References

[1] H. Frahm, Device for damping vibrations of bodies, U.S. Patent No. 989,958, 1911.

[2] J.P. Den Hartog, Mechanical Vibrations, fourth ed., McGraw-Hill Book Company, New York, 1956.

[3] J. Ormondroyd, J.P. Den Hartog, The theory of the dynamic vibration absorber, Transactions of the American Society of Mechanical

Engineers 50 (1928) A9–A22.

[4] M.N.S. Hadi, Y. Arfiadi, Optimum design of absorber for Mdof structures, Journal of Structural Engineering 124 (1998) 1272–1280.

[5] M.P. Singh, L.M. Moreschi, Optimal placement of dampers for passive response control, Earthquake Engineering & Structural

Dynamics 31 (2002) 955–976.



ARTICLE IN PRESS
Y. Starosvetsky, O.V. Gendelman / Journal of Sound and Vibration 324 (2009) 916–939 939
[6] M.B. Ozer, T.J. Royston, Extending Den Hartog’s vibration absorber technique to multi-degree-of-freedom systems, Journal of

Vibration and Acoustics 127 (4) (2004) 341–350.

[7] R.E. Roberson, Synthesis of a nonlinear dynamic vibration absorber, Journal of the Franklin Institute 254 (1952) 205–220.

[8] J. Shaw, S.W. Shaw, A.G. Haddow, On the response of the nonlinear vibration absorber, International Journal of Non-Linear

Mechanics 24 (1989) 281–293.

[9] H.J. Rice, J.R. McCraith, Practical non-linear vibration absorber design, Journal of Sound and Vibration 116 (3) (1987) 545–559.

[10] I.N. Jordanov, I.B. Cheshankov, Optimal design of linear and nonlinear dynamic vibration absorbers, Journal of Sound and Vibration

123 (1988) 157–170.

[11] S. Natsiavas, Steady state oscillations and stability of non-linear dynamic vibration absorbers, Journal of Sound and Vibration 156 (2)

(1992) 227–245.

[12] O.V. Gendelman, Transition of energy to nonlinear localized mode in highly asymmetric system of nonlinear oscillators, Nonlinear

Dynamics 25 (2001) 237–253.

[13] O.V. Gendelman, A.F. Vakakis, L.I. Manevitch, R. McCloskey, Energy pumping in nonlinear mechanical oscillators I: dynamics of

the underlying Hamiltonian system, Journal of Applied Mechanics 68 (1) (2001) 34–41.

[14] A.F. Vakakis, O.V. Gendelman, Energy pumping in nonlinear mechanical oscillators II: resonance capture, Journal of Applied

Mechanics 68 (1) (2001) 42–48.

[15] A.F. Vakakis, Inducing passive nonlinear energy sinks in linear vibrating systems, Journal of Vibration and Acoustics 123 (3) (2001)

324–332.

[16] A.F. Vakakis, L.I. Manevitch, O. Gendelman, L. Bergman, Dynamics of linear discrete systems connected to local essentially

nonlinear attachments, Journal of Sound and Vibration 264 (2003) 559–577.

[17] E. Gourdon, C.H. Lamarque, S. Pernot, Contribution to efficiency of irreversible passive energy pumping with a strong nonlinear

attachment, Nonlinear Dynamics 50 (2007) 793–808.

[18] E. Gourdon, N.A. Alexander, C.A. Taylor, C.H. Lamarque, S. Pernot, Nonlinear energy pumping under transient forcing with

strongly nonlinear coupling: Theoretical and experimental results, Journal of Sound and Vibration 300 (2007) 522–551.

[19] Y.S. Lee, A.F. Vakakis, L.A. Bergman, D.M. McFarland, Suppression of limit cycle oscillations in the van der Pol oscillator by

means of passive non-linear energy sinks, Journal of Structural Control and Health Monitoring 13 (2006) 41–75.

[20] Y.S. Lee, A.F. Vakakis, L.A. Bergman, D.M. McFarland, G. Kerschen, Suppressing aeroelastic instability using broadband passive

targeted energy transfers, part 1: theory, AIAA Journal 45 (3) (2007).

[21] Y.S. Lee, G. Kerschen, D.M. McFarland, W. Joel Hill, C. Nichkawde, T.W. Strganac, L.A. Bergman, A.F. Vakakis, Suppressing

aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments, AIAA Journal 45 (3) (2007).

[22] O.V. Gendelman, E. Gourdon, C.H. Lamarque, Quasiperiodic energy pumping in coupled oscillators under periodic forcing, Journal

of Sound and Vibration 294 (2006) 651–662.

[23] O.V. Gendelman, Y. Starosvetsky, Quasiperiodic response regimes of linear oscillator coupled to nonlinear energy sink under

periodic forcing, Journal of Applied Mechanics 74 (2007) 325–331.

[24] O.V. Gendeman, Y. Starosvetsky, M. Feldman, Attractors of harmonically forced linear oscillator with attached nonlinear energy

sink I: description of response regimes, Nonlinear Dynamics 51 (2008) 31–46.

[25] Y. Starosvetsky, O.V. Gendelman, Attractors of harmonically forced linear oscillator with attached nonlinear energy sink II:

optimization of a nonlinear vibration absorber, Nonlinear Dynamics 51 (2008) 47–57.

[26] Y. Starosvetsky, O.V. Gendelman, Strongly modulated response in forced 2dof oscillatory system with essential mass and potential

asymmetry, Physica D 237 (2008) 1719–1733.

[27] Y. Starosvetsky, O.V. Gendelman, Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and

frequency detuning, Journal of Sound and Vibration 315 (2008) 746–765.

[28] Y. Starosvetsky, O.V. Gendelman, Dynamics of essentially nonlinear vibration absorber coupled to harmonically excited 2 dof

system, Journal of Sound and Vibration 312 (2008) 234–256.

[29] V.I. Arnold, V.S. Afrajmovich, Yu.S. Il’yashenko, L.P. Shil’nikov, Dynamical Systems V. Encyclopedia of Mathematical Sciences,

Springer, Berlin, 1994.

[30] J. Guckenheimer, M. Wechselberger, L.-S. Young, Chaotic attractors of relaxation oscillators, Nonlinearity 19 (2006) 701–720.

[31] J. Guckenheimer, K. Hoffman, W. Weckesser, Bifurcations of relaxation oscillations near folded saddles, International Journal of

Bifurcations and Chaos 15 (11) (2005) 3411–3421.

[32] P. Szmolyan, M. Wechselberger, Relaxation oscillations in R3, Journal of Differential Equations 200 (2004) 69–104.

[33] A. Rittweger, J. Albus, E. Hornung, H. Ory, P. Mourey, Passive damping devices for aerospace structures, Acta Astronautica 50 (10)

(2002) 597–608.

[34] A.A. Golafshani, H.R. Mirdamadi, Adaptive control of structures by LMS algorithm: a comparative study, Structures and Buildings

152 (2001) 175–191.


	Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping
	Introduction
	Description of the model and analytic treatment
	Piecewise-quadratic damping
	Model
	Analytical treatment
	Periodic responses
	Strongly modulated response (SMR)


	Tuning of piecewise-quadratic damping to prevent undesired periodic regimes
	Concept of tuning
	Drawbacks of linear and quadratic damping characteristics
	Tuning the damper with piecewise-quadratic characteristics

	Numerical verifications and simulations
	Conclusions
	Acknowledgment
	Algorithm for calculation of an Nx, x pair for the first case (N1 acr N2):
	Algorithm for calculation of an Nx, thetax pair for the second case (N2 acr):

	References




